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ABSTRACT

Turbulent convection is a phenomenon relevant to both stellar structure and accretion disks. In the latter, a
basic parameter such as the turbulent viscosity v, is still treated phenomenologically; in the case of stellar
structure, most of the work still relies on the mixing-length theory (MLT) which assumes homogeneity and
thus lacks diffusion terms (divergence of third-order moments like w26, w6, g’w). To include them, one needs a
new formalism. We review and discuss the Reynolds stress approach (proven successful in other fields) which
provides a set of coupled differential equations that yield all the turbulent quantities of interest. Although the
system can only be solved numerically, some features can be listed: '

1. The convective flux F, = ¢, pwB is not given simply by (x, is the turbulent conductivity)
FC=FLMLTth(V~Vad)'

2. Inclusion of the diffusion terms related to w26 and w@? contributes a countergradient term I',, which may
carry heat from cold to hot regions,

Fxx(V-V,+T,.

The term I'; was first discussed by Deardorff in the context of atmospheric turbulence.
3. Inclusion of the diffusion term related to 3g°w (turbulent kinetic energy flux) contributes an additional
term (first discussed in atmospheric turbulence by Tennekes)

e X KI(V - Vad + rc) + ngff’
which is responsible for overshooting.

In addition to the convective flux, we also derive a model expression for v, as a function of both shear and
buoyency: it is needed in the numerical simulation of stellar convection and in accretion disks to replace the
phenomenological expressions used thus far.

Subject headings: accretion, accretion disks — convection — stars: interiors — turbulence

1. INTRODUCTION

The complexity of turbulence is such that we do not yet possess a general theory to describe different types of turbulent flows. For
reasons based more on practical considerations than on a priori choices, more attention has been devoted in the past to turbulence
generated by mean velocity gradients than mean temperature gradients, that is, turbulent convection, which is, however, a
phenomenon of great relevance to studies of stellar structure and accretion disks. In the latter, turbulent convection is still treated
with mixing-length theory (MLT), whereas modern turbulence theories permit a significantly more accurate treatment. In that spirit,
Canuto & Mazzitelli (1991, hereafter CM1) recently employed a successful model of homogeneous turbulence—the EDQNM model
(Eddy-Damped Quasi-Normal Markovian: Orzsag 1977; Lesieur 1990)—to compute the convective flux appropriate to a stellar
interior. The new treatment incorporated, among other things, the contribution of eddies of all sizes, thereby overcoming the rather
extreme MLT assumption that the full eddy spectrum can be represented by one large eddy. The new model (CM1; Canuto &
Mazzitelli 1992, hereafter CM2) has interesting astrophysical consequences.

However, the original EDQNM model and even the more complete DIA model (Direct Interaction Approximation: Kraichnan
1964) have limitations: they can only describe homogeneous turbulence. As the onset of turbulence of almost any kind is known to
entail strong mixing and smoothing of large gradients in both mean quantities (e.g., the temperature) and second-order correlations
(e.g., the convective flux wh, turbulent energies w?, etc., where w and 6 are the turbulent or fluctuating velocity and temperature), one
may be tempted to conclude that the homogeneity approximation is fairly safe. This is conditionally true, as experiments by Willis &
Deardorff (1974) have demonstrated: the core of a convective zone is indeed nearly homogeneous, but large gradients and, thus,
inhomogeneities occur in regions comprising approximately 10% of the thickness of the convective region. Accordingly, when only
bulk properties are required, the homogeneity approximation may be reasonable, but as soon as phenomena occurring in the
vicinity of the transition region need to be described, a more complete formalism able to incorporate inhomogeneities must be
employed.

In the context of stellar convection, a conspicuous manifestation of inhomogeneity is “ overshooting,” a phenomenon that has a
long and somewhat controversial history: see Marcus et al. (1983), Zahn (1991), Andersen, Nordstrom, & Clausen et al. (1990),
VandenBerg & Poll (1989), and Stothers & Chin (1991). The contradictory results that have appeared in the literature over the past
25 years should not be viewed as casting doubt on the existence of the phenomenon which geophysical and laboratory experiments
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have confirmed; rather, they are a reflection of the inadequacy of the MLT. The problem is that MLT and overshooting do not mix.
MLT treats turbulence as homogeneous, whereas overshooting is a distinctive feature of the inhomogeneous nature of convection in
the transition region. Thus, while the MLT has proven to be a useful tool to estimate bulk properties which are possibly less
sensitive to whether homogeneity is assumed or not, it cannot incorporate overshooting,

In this paper we adopt the Reynolds stress formalism to treat turbulent convection: the formalism has a rather long history, and it
has been successfully applied to laboratory and atmospheric turbulence (Zeman 1981; Speziale 1991). It is the goal of this paper to
review this methodology and suggest that it may prove very useful to treat stellar and accretion disk turbulent convection, as well as
in the construction of the subgrid models needed in large eddy simulations (Chan & Sofia 1989; Hossain & Mullan 1991). The final
result consists of a set of differential equations that yield the mean and turbulent quantities, such as convective fluxes, turbulent
viscosity, turbulent conductivity, etc.

2. THE PROBLEM

Let 0 and w be the turbulent temperature and velocity (in the z-direction). The definition of the convective flux F, is then (an
overbar means ensemble average)

F,=¢, owl , 1
and the goal is to express wf as a function of the Rayleigh number
f4
Ra = 2P0 @)
VX
where g is the local gravity, « is the thermal expansion coefficient, # is a mixing length, and f is the overadiabatic gradient,
(0T/02),a = —g/cps
oT (0T
=—|——-{—=—) |=TH,'(V- .
g [ = ( = )d] 7V = V. &)

Moreover, x = K/c, p is the thermometric conductivity, while K is the thermal conductivity; finally, v is the kinematic viscosity.
Since in stellar interiors v is exceedingly small compared to x (for the Sun, the Prandtl number ¢ = v/y 10~%; Massaguer 1990), it
is more convenient to use a variable independent of viscosity, that is, the product

gapst

cRa=§S=—7 4)
X
In astrophysical notation,
S =1624%V—-V,), (5
A _ ¢ pZKfz _g— 1/2 (6)
12acT? \2H,

(Cox & Giuli 1968), where « is the opacity and the remaining symbols have their usual meaning. Since the radiative flux F, has the
form

oT

F,= -K—
= —K o, U
the MLT suggests writing equation (1) so as to exhibit the structure (7), that is,
oT (0T
FPMT — K} — — | — , 8

=k 5 (%).] ©

where K, is a turbulent or eddy conductivity for which the MLT suggests the expression
Kife,p =1, ~ 3l , ©)

where 142 is the turbulent kinetic energy. Thus, the basic MLT formula for the convective flux becomes (Bohm-Vitense 1958; Cox &
Giuli 1968; Spruit, Nordlund, & Title 1990)

F.=c,pBr®, (10)
@ =x/x, (11

and the problem then reduces to that of finding the dimensionless function ® versus S. If one assumes that the heat transport by the
eddies occurs without losses due to radiative processes, equation (10) should be independent of x. Since S ~ x, this demands that

O o S1/2 ~ ﬁl/Z/ZX—l , (12)
yielding the well-known result (Schwarzschild 1958)
F.~(V =V, %%, (13)
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When heat losses by the traveling eddies (Opik 1950) are accumulated for, the new formula for @ is (Cox & Giuli 1968; Gough &
Weiss 1976; Canuto & Goldman 1985)

@ =S+ 8 -17°, (14)

which reduces to $'/% in the case of large convective efficiency I' = (§ + 1)/ — 1.

CM1 have recently pointed out that the inviscid nature of stellar interiors renders the basic MLT tenet (the dominance of one
large eddy) a singularly poor approximation. In fact, in any turbulent flow, the lower the viscosity, the wider is the range (spectrum)
of eddies that characterize it. Specifically, the ratio between the largest L and the smallest £, eddies can be shown to be L/¢, ~
v™ 3% ~ ¢73* As shown in Figure 1 of CM1, for a Prandtl number of ¢ ~ 103, the ratio is about 10°. As discussed in CM1, the
evaluation of the full turbulent energy spectrum requires the use of a turbulence model, and CM1 adopted the EDQNM model
(Orszag 1977; Lesieur 1990). Once full the eddy spectrum is obtained, the convective flux F, can be computed. As expected, the
larger number of eddies leads to a larger flux. As shown in CM, for large convective efficiencies, the new flux is F, ~ 1OFMLT in
agreement with the numerical simulation of convective turbulence by Cabot et al. (1990).

3. THE FUNDAMENTAL EQUATIONS

The Navier-Stokes equations for the total velocity field v; are given by
0 0 A ~
P 5"‘”;’& v; = —P;— Pgi + pv; j; — 2D Qs (15)
P

where a; = 0a/0x;, p and j are the total density and pressure, g; = (0,0, g), 4/p = v is the kinematic viscosity, €; i« is the antisymmetric
tensor, and € is the angular velocity vector. Let us now write

ﬁ=p0+P*y T=TO+T*’ l~7=P0+P*a (16)
where the static components p, and p,, satisfy the hydrostatic equilibrium equation

0
T2 —pogi. (17
X;

The remaining P, T,, and p, correspond to the parts affected by the motion, that is, by the velocity field: since the latter has an
average and a fluctuating (or turbulent) part, they will be further split in the two corresponding components (see eq. [28]). For the
time being, substituting equations (16) and (17) into equation (15), we obtain

0 0 1
(5 + v; g)vi = — 5 P i— <1 - %)gi + v — 265840 . (18)
J

Let us consider the coefficient of g;. Using the equation of state for a perfect gas

B=RpT, po=Rp,T,, (19
we derive the relation
P -1
1_@=<1+_*> (ﬁ_&), (20)
p Do po T

Since we cannot treat the case of fully compressible turbulence (represented here by the term P,/p,), but at the same time we want to
account for some of its effects, we shall write equation (20) as

2= d() GG
1—T=—_+_+0 R e 5 2la
p Ty po Po Ty )\ po (212)

which, within the Boussinesq approximation, further simplifies to

1-Le- —aT,, (21b)
p
where a is the thermal expansion coefficient T *. Inserting equation (21b) into equation (18), we obtain
0 0
5*‘”1‘& vy= =Py i+ LT, + vy 55— 26,3 Q,1,, 22)
J.

where 4; = g;«. For ease of notation, the density p,, is taken to be unity.
Next, consider the temperature field. For that, we begin with the equation for the entropy Z,

(0 2
pr(a +10 E)E =-F,+0, @3)
J
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oT
Fi=—-K—_——.
= -K3 (24)
F" is the radiative flux, and Q represents an external source of energy. Using the definition
Tdz = cpd7~‘ —ptdp 25)

as well as equations (16) and (17), we derive (the hydrostatic variables are time independent) the equation satisfied by the
temperature T,, that is,

L VR [0 d 0*T,
<6t o ax,.>T* = Fivs+ o) (at o ax,.>P +1G (26)
where
T, g¢;
0 _ (2204 Y
B = ( ox, +c,,>’ (27a)
Q=Fi(Tp). (27b)

In atmospheric turbulence, equation (26) coincides with equation (2.19) of Donaldson (1973) who also assumes §§ = 0, correspond-
ing to an isentropic basic state, and who neglects the P, term since it is of second order in the Mach number. In stellar convection,
equation (34) of Spiegel & Veronis (1960) is equivalent to equation (26) without the pressure term P,.

Equations (22) and (26) are our basic set of equations. Next, we split each field into its average and fluctuating parts, that is, we
write

oy=Uj+u, P,=T+p, T,=0+80, (28)

where the fluctuating or turbulent components have zero average, #; =0, p =0, and 6 = 0. In the case of the pressure and
temperature fields, since there is a static component, the physical average field is

T=T,+@®@=T, P=p,+1=P, (29)

that is, the symbols T and P will be used for the true average temperature and pressure. Substitute equation (28) into equations (22)
and (26), average the resulting expressions, and subtract the latter from the full equations. The result is

DU, o1l o U,
E: ——Ex"'*"iz@—au;uj'*'v axz —ZSIIijUk, (30)
i j 1
Du, 9 U, 0 2.
—_l=___u_l__(utu_u—;g)'*'lllg"'v—l—zelQu , (31)
Dt ox; T ox; Ox; g J ax? i S35 U
DO LS I p—
E=ﬂ?Uj+XEc7_7u"6’ (32a)
J f
Do oT g; K - 2%6
= o T o) Tk Wl —wd+ g, 32b
Dt “f(axﬁc,,) 0x; ;0 —u )+Xax12 (32b)

where D/Dt = 8/0t + U;0/0x;.
In the case of static convection without a mean flow, the left-hand side of equation (32a) vanishes. Integrate once using a plane
geometry (eqs. [7] and [27b]). If we call F.,, the integral of Q, we obtain the flux conservation law valid at any level z,

Fl2) + F(2) = Feul2) - (33)

4. SECOND-ORDER MOMENTS

Since we are interested in the convective flux, we must construct an equation for m Multiplying equation (31) by 6, equation
(32b) by u;, and summing the results and averaging, we obtain (for ease of notation, we shall omit temporarily the g/c, term in eq.
[32b], and reinstate it at the end):

D — __ T —0U; — 0 —_
P g e L 1 I — — Ouu, 4 1 — 26,0, 34
| Di u; 0 THTH o, Bu; ox, + 4; 0 o, Ou; u; + n; — 26,5 Q510 (34a)
where
p o*u; %0
M=6_— =v0 — i . (34b)
=9 ox;’ M=V ox} ta ox?
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We shall write the vector #; as

1 62 o0 u6
SO+ D w0 -, (349
J

00 ou; 1 Ou;\ 0 00
w0 _ R — 1. 34d
n =0+ 5%, 0%, 2 50— x)[ ( Em ) o, (u. ax,.>] (34d)
Following arguments first presented by Lumley, Zeman, & Siess (1978), the first term in equation (34d) is nonzero only for large
Prandtl numbers which, however, are not found in stellar interiors. The second term can also be considered small on the grounds
that 8 and Ou,/0x; peak at different wavenumbers, and their product has little overlap. We shall therefore propose to take 7 ~ 0

and so the vector 7, is given by the first term in equatlon (34c) only.
Next, we derive the equations for u;u; and 6. Using equations (31) and (32b), we have

H; =

with

Dg* — 0T 0 —&5 020°
— — _0uf— — —u, — e, .
Dt 2u; 6 o w; 0% + 1 o €g (35a)
D __ U, oU; o ([ 2 2
Euiuj-=—(ujuk§kl+ul ka )—a—x"(u,ujuk-l-gdjpuk)-}-lu9+/'lu0 H +Va 2 €,-j—2Qij, (35b)
Equation (35b) was first obtained by Chou (1945). We have defined
0 “op 2 0 __ S
I;=u a_p_ + u % 3 5 7 Pl Qi = (€a i + €001, , (35¢)
i k
06 ou; Ou; 2
= =2y ——4=4¢. (35d)
= X(@x ) s = a3 %u¢

In § 8 we shall derive the dynamic equations for € and €,. Of special interest is the equation for the turbulent kinetic energye = %5—
where g% = w; u;,

1= __au;, o (1 — 0%
5 __uiuj:’ix—j ax<qu+pu>+/1,-u,-0+v5;—5—e—9ﬁ. (35¢)

i

b|g

5. THIRD-ORDER MOMENTS

For many years, it was customary to employ the down-gradient approximation (Donaldson 1973; Launder, Reece, & Rodi 1975)

_ 0 ___
Uty ~ —v,a—Xkuiuj, (36a)

0 —
uu; 0 ~ —v,a—)cjuie, (36b)
WP~y L (36¢)

1 taxx 2

where v, is a turbulent or eddy viscosity usually written as the product of a typical length times a velocity. The rationale behind this
type of approximation was an extension of the second-order closure whereby one takes

oU;
Uil ~ —v, = 7, (36d)

Equations (36a-36¢) have been recently criticized for their unphysical implications, even though they are still frequently used in
many geophysical studies. For example, they have been employed in the well-known treatment of the planetary boundary layer by
Mellor & Yamada (1982), which has been altogether quite successful in describing the mean properties of the flow. Of 23 papers
recently reviewed by Moeng & Wyngaard (1989), all but four employ the down-gradient approximation.

The original motivation was best expressed by Lumley & Khajeh-Nouri (1974): “if a crude approximation for the second-order
moments [eq. (36d)] predicts first-order moments adequately, perhaps a crude approximation for third-order moments [eqgs.
(36a-36¢)] will predict second-order moments adequately.” This has however not been the case, especially in the presence of strong
convective motions which are the ones of interest here. For example, planetary boundary layer data show that (Wyngaard 1973)

— 0

wi>0, EF”’ (36¢)
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whereas the down-gradient approximation (eq. [36]) implies just the opposite. Zeman & Lumley (1976) have pointed out other
shortcomings for the kinetic energy flux. The main physical ingredient not accounted for by the down-gradient approximation is
buoyancy. Moeng & Wyngaard (1989) using large eddy simulation (LES) data have shown that buoyancy effects give the largest
contribution to w26 and/or w?q, whereas the down-gradient approximation accounts for the smallest of all contributions. The
conclusion is that, in the case of strong convection, one must bypass the down-gradient approximation and consider the full
expression for the third-order moments (Finger & Schmidt 1986).

Using the basic equations derived above, we derive the following results:

D U, 0 __ o
'B'LZUiujuk= - uiu‘ju{E‘{‘perm. + uiuja_x[uku{"'perm. _'é—x_{uiujuku(
I 92
+ (A;u;u 0 4 perm.) — Ty — 2 — €3 + v @ (wuju), (37a)
where
op (37b)
I = wu; 6_xk + perm. ,
Qiji = (€ipm Uj g Uy, + pErm.)<2, , (37¢)
.0
€ =29\ u; uy Ot + perm. | . (37d)
0x, 0x,
Using the definition of the tensor €;; (eq. [35d]), we shall write the tensor €;; as
- 2 _ 2 ——
€ X U; €5 + perm. = 3 (0 u;€ + perm.) = 3 (64 q°u; + perm.) , (37e)
where we have used the relations
we=1'qu, t=g. (370)

Analogously, one derives

D

oT U, —— U, 0 —
i wu;0 = —wu;u, 5)(—{ — (u,u,(? Ecj + u;u, 0 6_x,> - a—x( uyuu, 0 + uuy o, Ou, + Ou, ?: uju,
Ou; 9 1;6° 1,6° I, — 2A 38
+ “ja_x[“i“ﬂL i0%u; + 4;0%u, — 05 — 20 + 1y, (382)
where
Op dp

b= 0u; — = (38b
Ty = 0w, ox; + 6uy 0x; ’ )
Agj = (€m0 + €1, 0)Q (38¢)

0%u; 0%y, %0
Ny = v(eui ng + Buj a-g) + i u; a_xf . (38d)

The tensor 7;; is considerably more difficult to handle than any of the previous dissipation terms, and we can therefore only offer
formulae that are not fully rigorous, but rather based on physical arguments. Consider the first parentheses in equation (38d): we
shall rewrite it as

0 ox2 ikt = Ox, Ox,

While the first term may be considered small because the two terms peak at different wavenumbers, the last term may be written,
using the tensor ¢;;, as

—v 8¢, = —v 148,070 (38¢)
Introducing the time scale 7, defined as

19 = 0%/eq (38f)
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one can perform a similar analysis of the second term in equation (38d). Collecting the results, we finally obtain

which we shall rewrite as

M= — 3 €10 6ijﬁ . (38g)

André et al. (1978) and André, Lacarrere, & Traoré (1982) have suggested a similar result with the value ¢, = 6.
Next we consider the quantity u; 82 for which the dynamic equation is derived to be

D%W: —2W%—W%%+ﬁgi—jm+2%%97,.—6%%1—11?%ziF—zeiijju_,,F+wi, (39a)
where
ny = 62 % ,  w,=v8? ﬁuz, + 2x6u; iz . (39b)
0x; 0x7 0x;

As before, the vector w; will be treated only approximately in the hope of getting the major physical contribution. First, we
propose to neglect the first term because of the vanishing viscosity and the fact that 6° and 0%u,/0x? peak at different wavenumber;
as for the second term, we shall write it as

so that finally
0, = —26u; = —2t; 1 0%, (39d)
where, in analogy with equation (37f), one takes
€ =15 "7y (3%)
For completeness, we also derive the equation for 63,
2
%@:—302_152—;—5%54}36_2%0_%“:7%@—%, (40a)
where
aw=610(32) = (227, (40b)

and where the last step is based on a suggestion by André et al. (1978, 1982).
6. FOURTH-ORDER MOMENTS
As expected, the third-order correlations imply the fourth-order correlations

Uty ,  wun b,  uu;.

Like previous authors, we shall adopt the Hanjalic & Launder (1972, 1976) approximation discussed in detail by Zeman (1981).
This consists of taking the fourth-order moments to be jointly Gaussian distributed but replacing the pressure correlations, which
are integrals of fourth-order products, by third-order terms divided by a time scale that, following other authors, we shall denote
by 73. Lumley et al. (1978) have pointed out that the Hanjalic-Launder approximation is physically equivalent to the EDQNM
model (Orszag 1977; Lesieur 1990). We shall therefore assume that for any abcd we have

abcd = ab cd + ac bd + ad be , @1)
which will allow us to express the third-order correlations in terms of the second-order correlations.
7. PRESSURE CORRELATION TERMS

Both the second- and third-order moments contain the pressure correlation terms I1¢ and IT;; (egs. {34b] and [35¢]), which must
be specified before the equations can be solved. Both terms have been the subject of much work over the years (Lumley 1978;
Lumley et al. 1978; Lumley & Khajeh-Nouri 1974). To begin, let us take the divergence of the momentum equations foru; (eq. [317).
The result is the following Poisson equation (no rotation):

*p a2 oU; du; o0
ox?  0x;0x; itk = tih) = 2 ax; ox;  ox;

(42)
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Pressure fluctuations thus arise from three sources: turbulence-turbulence interaction (first term), turbulence-mean flow interaction
(second term), and buoyancy forces (last term). In the absence of the last term, Launder et al. (1975) suggested that the tensor IT;; be
constructed so as to mirror the contributions in the Poisson equation. Thus, for the deviatoric (traceless) part, they proposed the
form

I, = 2‘317_1(%“1’ - %?5;'1') + Cz(Pij - %Péij) s
with
___oU, ___0U;
Pij= ”(“iuk—1+ujuk '_a;k> Py

0%,
and P is the trace of P;;. Historically, the first term in II;; was proposed by Rotta (1951) and is called “ return-to-isotropy,” for Rotta
suggested that “collisions” among (large) eddies would promote a return to isotropy proportional to the prevailing level of
anisotropy. The second term in T1;; was first proposed by Naot, Shavit, & Wolfshtein (1973) and later discussed by Launder (1975),
who pointed out that once the importance of the second term is accepted, “it is difficult not to conclude that an analogous term
arising from buoyancy forces not be included.” He then proposed a “rational extension ” of the form

Pij_'Pij_(’li%;'F )vjm‘—i) .
Analogous reasoning applied to the vector IT{ (eq. [34b]) suggested a structure of the form (Launder 1975)
H? = 2C11_1m - C2<m & + Aly) .
0x,

At the same time, Zeman & Tennekes (1975) pointed out the need to include in IT;; vorticity terms and thus the need to include a
new tensor in the expression for IT;;. In what follows, we shall give the general expressions for I1; and IT;; and then compare them
with the forms suggested by different authors. In the ordering of terms, we follow Zeman & Lumley (1979):

I =105 + 11, , (43)
T, = 2c5t ' %;0 + ¢, 0967 53, (43a)
1t =~ 50— 2oy ) 60— 0T + 0y . @3b)
and for the traceless tensor I1;;,
;= I’Ig}) + Hgf) R (44)
T = 2¢, 77 'by; + c5 (83 0u; + 03;0u; — 36,,0w) (44a)
—TIY = 300 eS;; + 20,(Si byj + Sijba — 36,8 ba) + 205(Ry byj + Ry by — 36, Risbs) (44b)
where
bij = a;—“, - %?5”‘ s
2sijs%+%l-]x-:, 2Rijsg—l£—%—l£—4eijknk. (44¢)
Zeman & Lumley (1979) suggested (see, however, Gerz, Schumann, & Elghobashi 1989)
2, =35, cs=1, 2¢=15, ¢=%%, @=3%, =031, «,=022, q,=056. (44d)
The other pressure correlation terms are taken to be (André et al. 1982)
Il = 2c5 7 ‘Ut Uy + Cy5(u;4;0 4 + perm)) , (44e)
I = 2eg v 0050 + 334y 0% + Ayt 0 — 30, i 07) — 317 (e + 3¢5)g°005, (a4f)
1% = 2c4 1" 11,07 + ¢y 407 . (45)

8. DISSIPATION TERMS

The equation for € is usually written as (Lumley & Khajeh-Nouri 1974; Zeman 1975; Zeman & Lumley 1976; Lumley 1978;
Launder 1990)
—D—€+i(aﬂ—ar_l(P +P)—aer! (46)
Dt an o 1 8 S, 2 s
with a, = 1.44,a, = 3.8,and

Py = trace of: P% = A,0u; + 4;0u; (47)
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___0U;, __.oUu;
| P, = trace of: P;; = —<uiuk Ek} + u;uy, 6_xk> . (48)
The standard form of equation (46) without buoyancy (e.g., Speziale 1991) may look slightly different from equation (46);
however, assuming 7 to be constant, one has 8g°/0z = (g*/€)d¢/0z, and so, using equation (37f),

— /(0 =\18 = e
-1 73 22\ L2 . &
W=7 [q W/(azqﬂazq Ko (49)

K= —a*woq*/0)" (50)
which makes equation (46) look like its standard form. Since «, has dimensions of w/, a dimensional argument applied to equation
(46) yields

e3/2
~— 51
e~ (51)
The major disadvantage of equation (51) is that it does not prescribe the mixing length #, the choice of which, however, is crucial.
The equation for €, is given by (Zeman & Lumley 1979)

D 0 _ it o — _,— 0T
Dt 6_x} (€u) = —b&1, 1(1 +7 f) + byler®) Ywh)2 — byt wl o+ Ve, (52)
where the relations analogous to equations (49) and (50) are
_ i ——(96%\ !
€w=—K, 5, > K, = —62w<5> . (53)

The suggested values of the constants are b; = 3, b, = 30, and b; = 0.97. It must be noted that some authors (e.g., André et al. 1982)
have used the much simpler relation (¢, = 5/2)

€ =2c,17 102, (54)

9. EQUATIONS FOR THE THIRD-ORDER MOMENTS
Using equations (41), (44e—44f), and (45), equations (37a), (38a), (39a), and (40a) become

D _\ ou, N —
D + 13 )u,-ujuk = — | uu;u, 6_x, + perm. | — | u;u, 6—xf u;u, + perm. | + (1 — ¢;)(A; 8u; 4y + perm.)

2

I
—2Q; — ™ (6;;4%u, + perm.) + v e

{wu;uy), (55a)

D _ aT oU; ou; 0 — 0 = o~ d __
<E+t3 l)uiuj(): —uiujuka;—<uiuk05x—’+ u;u, 0 6_xk) —(uiuka—x"()uj+ ujuka—XkGu,.+ Oukauiuj>

k

2 — _ _ _
+ 3 €110 407U, + 171, 8,070 + (1 — ¢y4)(A; 0%u; + A,;0%) — 2A;;,  (55b)

D . . N\ ——0T ——oU — 8 — —~ — 0 = —
(Ft + 13+ 214 1)u,.GZ = —26u;u; 0_xJ — 6%y, 6_xj_ 20u; 6_xj Ou; + (1 — ¢1,)4:0° — w;u; 5;1 0% — 2€,;,Q;u, 6%, (55¢)
D Ci0 _—1\53 z—aT — 0 a2 62 a3
2 G = 307, 2 _ 3pu, L i
(Dt+ e T3 )0 u; ox, 30u; aij +x o 0, (55d)

where ¢, = (2/3)(cs + 3¢y — ¢1o). Lumley et al. (1978) have taken ¢,, = 3/10 and ¢, = 1, whereas, due to realizability requirements,
Andreé et al. (1982) concluded that ¢, = 0. In writing equations (55), we have used the notation (Zeman 1975, 1981)

T3 = 1/2¢4, (55¢)
André et al. (1982) have suggested ¢g = 8,¢4 = —0.67,¢,0 = 6,and ¢;; = .
' k 10. TURBULENT CONVECTION

In the case of pure convection, we shall take U = 0 and also neglect rotation and viscosity. Using equations (43), (44), and (Lumley
1978)

pw = —awg’, (56)

with a = %, the equations for the second-order moments, that is, equations (34a), (35a), (35b), (35f), and (55), become, after reinstating
the g/c, term and using equation (3), the following:
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:mi Convective flux:
2 05 053 _ gt yrs i 12—
= " +-a—z—0w = Bw? + (1 — ¢c)gal* — 2cq7 w0+§x-a?w0, (57)
S
-+ Turbulent temperature:
0, 8= o OO .
% 0* + pe wh? = 28wl + x 72 2¢y; (58)
Momentum flux:
2w2+—a— w3 —Zag?w )= —2¢c,7 ‘F—l? +2f1—Zcs\gabw — S € (59)
ot 0z 3 3 377
Turbulent kinetic energy:
6t2q +<2—a)a q°w = gowl — € . (60)

__To solve these equations, one needs the third-order moments 20, wo?,

¢*8, whose equations are given by equations (55), that is,

2, w3, ¢*w, which in turn entail two more moments, #° and

AR e v SR 2 R A Ay S s
<at+r3 )w()—ﬁw —weazw +201 3 €1t gawl* — 2w aZw6+‘r ¢, q°0, (61)
—a—+r—1+2z-1W=zﬂW—29_w£%—Fi'é7+(1—c )gad® (62)
a3 ¢ 0z 0z t ’
9 i\ — 0 = - E
— 417t wd = —3w? —w? + 3(1 —cyq)gabw” — 27 gw, (63)
ot oz
2+z;1+1—0f1 7w = — 2?2‘—6—»7%?—6—? + (1 = cy,)ge(20w? + ¢26) , (64)
ot 3 0z 0z
2 o1\ = gt + 2008w — (22 L w0 4+ w0 L 7 ) + 3,00 65)
a3 oz oz * ’
o N el LT+ LT
(az+ o 6° = 3pwo” — 3wh — 6 + 1 55 0. (66)

We have neglected terms like uw(uw)', uw(u8)’ compared to w2(w?) and w2(wbY, respectively. The equations for € and ¢, are equations
(46) and (52).

11. THE TEMPERATURE PROFILE

The complete model, equations (57)—(66) plus equations (46) and (52) for € and €,, contains the function B, the gradient of the true
temperature profile, defined by (see eq. [3])

oT g @ 0T, ¢ o 00©
= -] — — = —1—— —_ —_— ] = ——— 6
g (az+cp> (5z+ ) P T ©7)
with © given by equation (32a), that is,
0 0 — 2’0
wtE" T “

At this point, we can proceed in either of two ways: we can neglect the time dependence in equation (68), integrate once, and then
substitute 00/0z in equation (67). The result is

B=PBo—x w0, (69)

which expresses the variable § in terms of B,, the known temperature gradient (computed as if all the flux were transported by
radiation: in Cox & Giuli 1968, eq. [14.12], it is called the fictitious radiative gradient, and in dimensionless units it is denoted by V,)
and of the second-order moment wd. Therefore, once an external fo(z) versus z function is chosen, the set of equations (57)—(66) can
be fully solved. Clearly, equation (69) is just the flux conservation, equation (33).
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Another, more exact, way of proceeding is by way of keeping the time dependence in equation (68). Eliminating ® using equation
(67), one obtains the time evolution equation for the function §:

aﬁ aZB 62 J— aZﬁO
o Aoty (70)
We may note that from equation (27) we derive
L A— o(g
oz K700 - 0z \c,) " 1)

12. THE MLT FORMULA FOR F,

It is instructive to derive the MLT expression (13) from the full set of equations so as to understand its range of validity. Consider
equations (57)—(59) with y = 0 (maximum convective efficiency) and

a 0 7= —= o
==0, W w) =0, F=0, 72

that is, in the absence of third-order moments and temperature variance. At the same time, equation (46) will be used in its simplified
form (51), which we shall write as

0 — —
g(Wi wg?) =0,

e=ce’?f 1, (73a)

where the constant ¢, is taken from Schmidt & Schumann (1989, hereafter SS89) to be

2 \32
= = 0.84
¢, n( 3 Ko) 0.845, (73b)

with the Kolmogorov constant Ko taken to be 1.6; as before, £ and e are the mixing length and the turbulent kinetic energy. It then
follows that

r=2ee"1=c%el%. (74)
Substituting—w_2 from equation (59) into equation (57), we obtain
wl=x,B, (752)
where the turbulent conductivity x, is given by
K, =Ae?f(1 — A, /?N2%e 1)1, (75b)

and where the constants 4 are defined as
3ceccdy =21 —c7l),  cgeactA, =201 — i), (75¢)

and where N is Brunt-Vaisala frequency

N? = guf = (Hi>(v ~ Vo). (76)
p.
Finally, use of equation (60) gives
€= ga@ . a7
Equations (75), (77), and (73a) yield for the kinetic energy e,
e=A;/*N?, (78)
with A3 = A, + A4,/c,. Substitution of equation (78) into equation (75a) yields the convective flux 1)
Wl = C(ga)' 121262, (79)

with C = ¢, A3/%. Equation (79) coincides with equation (13).

13. COUNTERGRADIENT

Here, we shall relax the last two conditions (72) and investigate their effect. Repeating a calculation similar to the one in § 12, one
obtains

w_0=x,(—‘;—z+rc), (80)
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62
Fc~goc-;>0, (81)
where we have used the simplified notation
oT’ 0T (0T
(). 2

In equation (80), T, plays the role of a countergradient : even in regions where
V-V,u<0,

there is a convective flux carried by T.: heat can be transported from cold to hot regions. Deardorff (1972) proposed I', as the
explanation of the Priestly-Swinback effect (1947) in atmospheric turbulence. Recent relevant work has been carried out by
Grotzbach (1986), Finger & Schmidt (1986), Schumann (1987), who provides an excellent physical interpretation of the phenome-
non, and Holstag & Moeng (1991). The general conclusion is that the diffusion terms (divergence of third-order moments w?0 and
w8?) are responsible for the countergradient.

14. OVERSHOOTING

Although the only proper way to quantify the phenomenon of overshooting is by way of solving the full set of equations presented
earlier, we shall make here some general remarks. Within the context of atmospheric turbulence, this problem has been considered
by several authors (Ball 1960; Tennekes 1973; Zilitinkevich 1975). The basic argument is that near the inversion zone, where the
temperature gradient changes sign as one enters the stably stratified region, the dissipation € in equation (60) may be neglected.
Thus, the negative convective flux can be estimated from equation (60) to be

— (1 d —— 1 w3
ga(w0)5~<2—a>azqw~—<2—a> h (83)
where  is the height of the convective layer. In a state of fully developed turbulence, the turbulent kinetic energy is maintained by
buoyancy, and so one can take advantage of the exact relation (Cox & Giuli 1968, equations. [14.1 13-1147)

w3/(gafwB) = constant , (84)
so that '
(;vT))i 2 constant (% - a)(%)@ , 85)
to be compared with Tennekes expression
(WO); % — (W) - (86)

15. TURBULENT VISCOSITY AND CONDUCTIVITY . NUMERICAL SIMULATIONS

The advent of fast computers has made available two new research tools to investigate turbulence: DNS (direct numerical
simulation) and LES (large eddy simulation). The former refers to those situations in which either the Reynolds and/or the Rayleigh
numbers are sufficiently small to allow a description of all the dynamical scales (eddies). Since the number of degrees of freedom N to
be accounted for can be shown to grow as Re® (Marcus 1986), DNS techniques cannot be applied to geophysical and/or astro-
physical flows that are characterized by very large values of Re. This leaves as the only option the LES, through which one resolves
the largest scales or eddies, leaving open the problem of including the effect of the smaller eddies: one needs a model for the subgrid
scales (SGS). For a recent survey of LES results, see Nieuwstadt et al. (1991) and Nieuwstadt (1991). In the context of turbulent
convection of astrophysical interest, Chan & Sofia (1989) and Hossain & Mullan (1991) have carried out extensive LES computa-
tions. To represent the SGS, they adopted a model whereby the smaller scales are viewed as draining energy from the largest scales
via a turbulent viscosity v, for which the Smagorinsky model (1963) suggests

y, = C2A?S , 87)

where C, = 0.165, S is the shear exerted by the largest scales over the subgrid scales, and A is the size of the smallest scale stiil
resolved by the LES. The spirit of equation (87) is that the contribution of the SGS is entirely written in terms of quantities like A
and S that refer to the large scales and are therefore known. The empirical constant C, has recently been derived from the
renormalization group techniques (RNG; Yakhot & Orszag 1986).

It is generally felt that in the presence of strong buoyancy, equation (87) is incomplete since in addition to the time scale
represented by the shear there should also be the buoyancy-related frequency, N (eq. [76]). In general, one would expect a formula
of the type

v, = C2ASf(Ri), (88)
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where Ri is the Richardson number Ri = N2/§2; for Ri — 0, f— 1, and C — C,. Using the formalism developed earlier, we shall
calculate a possible form for f. To that effect, we make use of equation (75) where we further write k, as

ke=(,e'?, £ =AMl — A, A’N2e~ 1)1, 89)

Since we have included the presence of 67, the coefficient 4, given by equation (75¢) should be supplemented by 2(1 — ¢;)(csc.co) 1,
where the constant ¢y, which can be related to the Batchelor constant, has the value of 2.02 (SS89). We have also identified the length
¢ with A. Since we need to account for shear, we shall no longer use equation (60) but the more general equation (35f), where we shall
write (Rodi 1984; Hossain & Rodi 1982)

2
—Tw%—%:v,sz, SZ=%<Z—Z;+%Z—:) , (90)
so that finally
€=v,5%+xN2. o1
In analogy with equation (89), one writes
v=£¢4,eY,  f,=c,A, wic,=c, 92)
where c, is given by equation (73b). Rewriting equation (91) as
€=v,5%1 + ¢, ' Ri), 93)

where g, is the turbulent Prandtl number v,/k,, using equation (73a) we get an expression for the energy e. Substituting the result into
1

equation (92), we obtain, with CZ = ¢3¢, !,

1 1/2
v=C, A2S<1 + - Ri) , (94)
t
which is the expression first suggested by Lilly (1962) and used recently by Eidson (1985). While equation (94) is evidently formally
correct, the problem is to compute the turbulent Prandtl number o,, which in principle is not a constant but a function of Ri.
To that end, making use of equation (73a), we obtain from equations (91) and (92)

cce =AS%c, A+ ¢, Ri). (95)
Next, we substitute 7, from equation (89). The resulting expression for e is then used to obtain
v = ¢, A’S[X + (X% — 4,7~ 2 Ri)/2]V/2 | (96)
Ky = v{A /e 1 — Ayc2 N2A%y, 5™ 97
where we have defined
27*X =1+ n%4; Ri. (98)
Therefore, the turbulent Prandt! number is indeed not constant but
6{N) =05 0)(1 — A,c2N? A% %), 99)

where 6,(0) = ¢,/A; = constant.

Equations (90)—(92) are the expressions for the turbulent viscosity and turbulent conductivity that replace Smagorinsky’s formula
(87) in the presence of buoyancy and at the same time generalize Lilly’s formula (94). Using the new formula for v,, Fox & Sofia
(1991) have obtained preliminary results which indicate an overall improvement.

Finally, equations (90)—(92) could also be used in the study of accretion disks in lieu of the empirical formula (Pringle 1981;
Rudiger 1987),

vy=ac,H, (100)

where o is a free parameter, c, is the sound speed, and H is the height of the disk.

We must express a word of caution about equations (96)—(97). In fact, we feel that while equation (96) certainly improves the
Smagorinsky’s expression (87), it probably still underestimates the true value of v,. The suspicion is borne out by the fact that we
have assumed that 7, in equation (92) is a constant, while comparison with equation (89) indicates that the corresponding 7, is
actually larger than A due to the presence of the buoyancy term N7 in the denominator. A quantitative analysis of this effect requires
a more complex study than the one that led us to equation (96), which we suggest ought to be viewed as a first-order correction to
Smagorinsky’s formula.

16. CONCLUSIONS

Turbulent convection is such a complex physical phenomenon that no model is capable of accounting for all its important
features. The advent of the MLT, which suggested equation (13), offered a way to calculate bulk properties only, and as such the
MLT has demonstrably been a useful guide. It can be improved, as recent work has shown (CM1, 2; Chan & Sofia 1989).
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There is, however, a phenomenon that has eluded the MLT: over
such contrasting results that the reality of the phenomenon itse

TURBULENT CONVECTION WITH OVERSHOOTING 231

shooting, Worse yet, treatments using the MLT have given rise to
If has been doubted. Geophysical, numerical simulations and

laboratory data have dispelled such doubts (Zahn 1991). The phenomenon is important and must therefore be quantified (Marcus et

al. 1983; Andersen et al. 1990; Stothers & Chin 1991).

With the wisdom of hindsight, one can say that the MLT is inadequate to treat overshooting because it is based on the
assumption that convection is homogeneous throughout the convective zone, while overshooting is a manifestation of inhomoge-
neity. The MLT was not constructed to deal with overshooting but as a total to compute bulk properties which are ostensibly less
sensitive to the inhomogeneity assumption. One cannot therefore fault the MLT if the overshooting problem is in a poor state. The
MLT was devised to handle a specific task, and extrapolations to phenomena for which it was not tailored are bound to be

unsuccessful at best and misleading at worst.

In this paper we suggest the use of the Reynolds stress forma

lism which yields all the turbulent quantities of interest and which

incorporates overshooting. Effects due to rotation can also be included.
The complete model consists of differential equations for wo, w2, ¢2, 02, €, and 5. The flux conservation law is included in the solution
of the problem, which therefore also yields the mean temperature profile once the structure of the source, represented by B, is prescribed.
The Reynolds stress model departs from the models that have often been used to treat stellar convection. This in itself is of course
no guarantee of success; the model contains its own approximations, but at least it strives to include the physical features that are

indispensable to understand and qualify overshooting.

The past success of the Reynolds stress model to study atmosp
flow are even more demanding, seems to bode well for the per

heric turbulence, where the presence of both convection and mean
formance of the model in the case of stellar convection. A final

judgment will have to be postponed until the model is actually solved and applied to specific astrophysical cases like accretion disks

and stellar interiors.

I would like to express my thanks to my colleagues Y. Cheng, O. Schilling, and J. Chasnov for continuous help in the writing of

this paper.

APPENDIX A

In a steady state situation, the equations governing the third-order moments can be inverted so as to express the results in the

following general form (y = 0):

—_ o — — 5 —
W02=A152W0+A2%W2+A3_92,

0z

W=31%@+BZ%F+33§;¥, (A1)
F:CI%W)+C2%W+C3%?.
It should be noticed that with the down-gradient approximation (eq. [36]) we would have
A, =A4,=0,
B,=B;=0, (A2)
C,=C;=0.
Moreover, the “ eddy-viscosity ” coefficients 4, B, and C have the following general structure:
a,w? + a, gor?wh (A3)

where one clearly sees that buoyancy plays a basic role that a simple relation like equation (9) is unable to account for.
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